Iono comparison: IONO_FILTR_ITER versus IONO_FILTR

<table>
<thead>
<tr>
<th>Study variable</th>
<th>IONO_FILTR_ITER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference variable</td>
<td>IONO_FILTR</td>
</tr>
<tr>
<td>Missions</td>
<td>Jason-2 (j2)</td>
</tr>
<tr>
<td>Period</td>
<td>[21377, 22646]</td>
</tr>
</tbody>
</table>

Creation date: 2012/02/13

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A001</td>
<td>3</td>
</tr>
<tr>
<td>A002</td>
<td>4</td>
</tr>
<tr>
<td>A003</td>
<td>5</td>
</tr>
<tr>
<td>A004</td>
<td>7</td>
</tr>
<tr>
<td>A101</td>
<td>8</td>
</tr>
<tr>
<td>A102</td>
<td>9</td>
</tr>
<tr>
<td>A103</td>
<td>10</td>
</tr>
<tr>
<td>A104</td>
<td>11</td>
</tr>
<tr>
<td>A201</td>
<td>12</td>
</tr>
<tr>
<td>A202</td>
<td>17</td>
</tr>
<tr>
<td>A203</td>
<td>19</td>
</tr>
<tr>
<td>A204</td>
<td>22</td>
</tr>
<tr>
<td>A205</td>
<td>24</td>
</tr>
<tr>
<td>A206</td>
<td>26</td>
</tr>
<tr>
<td>A207</td>
<td>29</td>
</tr>
</tbody>
</table>
Diagnostic A001 (mission j2)

Name: Temporal evolution of differences between both altimetric components

Input data: Along-track altimetric components

Description: The temporal evolution of global statistics (mean, variance, slope) of differences between 2 different standards of a same altimetric component (sea surface height correction, altimeter parameter, orbit) are calculated from a cyclic way (altimeter repetivity, daily, weekly, monthly). These statistics are calculated from 1 Hz altimetric measurements after removing spurious sea level measurements.

Mean of IONO_FILTR_ITER - IONO_FILTR

Mission j2, cycles 1 to 128

Mean (m): 0.03998

Slope: -0.00350 mm/yr

Standard deviation of IONO_FILTR_ITER - IONO_FILTR

Mission j2, cycles 1 to 128

Mean (cm): 0.2411

Standard deviation (cm):
Diagnostic A002 (mission j2)

Name: Map of differences between both altimetric components over all the period

Input data: Along-track altimetric components

Description: The map of global statistics (mean, standard deviation) of differences between 2 different standards of a same altimetric component (sea surface height correction, altimeter parameter, orbit) are calculated over a given period which is the longer as possible to have obtain reliable statically results. These statistics are calculated from 1 Hz altimetric measurements after removing spurious sea level measurements.
Name: Periodogram derived from temporal evolution of altimetric component differences

Input data: Along-track altimetric components

Description: The periodogram derived from temporal and global altimetric component differences is calculated from cycle by cycle monitoring of altimetric component differences (derived from diagnostic A001). It is calculated from the mean or the variance differences. The Periodogram can be calculated for all the periods, but it can be focused on a dedicated period.
Name: Periodogram derived from temporal evolution of altimetric component differences

Input data: Along-track altimetric components

Description: The periodogram derived from temporal and global altimetric component differences is calculated from cycle by cycle monitoring of altimetric component differences (derived from diagnostic A001). It is calculated from the mean or the variance differences. The Periodogram can be calculated for all the periods, but it can be focused on a dedicated period.
Diagnostic A004 (mission j2)

Name: Altimetric component differences versus coastal distances

Input data: Along-track altimetric components

Description: Mean and standard deviation of the differences between 2 different standards of a same altimetric component (sea surface height correction, altimeter parameter, orbit) are computed and plotted in function of coastal distances between 0 and 100 km.

![Graph showing mean and standard deviation of differences between standards as a function of coastal distance.](image)
Name: Temporal evolution of SSH crossovers

Input data: Sea Surface Height (SSH) crossovers

Description: The temporal evolution of global statistics (mean, standard deviation) of SSH differences are calculated from a cyclic way (altimeter repetivity, daily, weekly, monthly) using successively both altimetric components in the SSH calculation. SSH crossovers are the differences between ascending and descending passes for time differences between both passes lower than 10 days (in order to reduce the effect of the oceanic variability).
Diagnostic A102 (mission j2)

Name: Differences between temporal evolution of SSH crossovers

Input data: Sea Surface Height (SSH) crossovers

Description: The difference of temporal evolution between the global statistics (mean, standard deviation) of SSH differences are calculated using successively both altimetric components in the SSH calculation. SSH crossovers are the differences between ascending and descending passes for time differences between both passes lower than 10 days (in order to reduce the effect of the oceanic variability).
Diagnostic A103 (mission j2)

Name: Map of SSH crossovers

Input data: Sea Surface Height (SSH) crossovers

Description: The differences between maps of SSH crossovers differences (mean, variance) are calculated using successively both altimetric components in the SSH calculation. SSH crossovers are the differences between ascending and descending passes for time differences between both passes lower than 10 days (in order to reduce the effect of the oceanic variability).
Diagnostic A104 (mission j2)

Name: Differences between maps of SSH crossovers

Input data: Sea Surface Height (SSH) crossovers

Description: The differences between maps of SSH crossovers (derived from diagnostic A103) are calculated from the SSH crossover differences (mean, standard deviation) using successively both altimetric components in the SSH calculation. SSH crossovers are the differences between ascending and descending passes for time differences between both passes lower than 10 days (in order to reduce the effect of the oceanic variability).

VAR(SSH with IONO_FILTR_ITER) – VAR(SSH with IONO_FILTR)
Mission j2, cycles 1 to 128

SSH crossovers: difference of variances (cm^2)
Diagnostic A201_a (mission j2)

Name: Temporal evolution of Sea Level Anomaly (SLA)

Input data: Along track SLA

Description: The temporal evolution of SLA statistics (mean, standard deviation) are calculated from a cyclic way (altimeter repetivity, daily, weekly, monthly) using successively both altimetric components in the SLA calculation. These statistics are calculated from 1 Hz altimetric measurements after removing spurious sea level measurements. They are calculated globally, but also separating ascending and descending passes (except for SLA Grids), or separating North and South hemispheres.
Diagnostic A201.b (mission j2)

Name: Temporal evolution of Sea Level Anomaly (SLA)

Input data: Along track SLA

Description: The temporal evolution of SLA statistics (mean, standard deviation) are calculated from a cyclic way (altimeter repetivity, daily, weekly, monthly) using successively both altimetric components in the SLA calculation. These statistics are calculated from 1 Hz altimetric measurements after removing spurious sea level measurements. They are calculated globally, but also separating ascending and descending passes (except for SLA Grids), or separating North and South hemispheres.
Name: Temporal evolution of Sea Level Anomaly (SLA)

Input data: Along track SLA

Description: The temporal evolution of SLA statistics (mean, standard deviation) are calculated from a cyclic way (altimeter repetivity, daily, weekly, monthly) using successively both altimetric components in the SLA calculation. These statistics are calculated from 1 Hz altimetric measurements after removing spurious sea level measurements. They are calculated globally, but also separating ascending and descending passes (except for SLA Grids), or separating North and South hemispheres.
Diagnostic A201_d (mission j2)

Name: Temporal evolution of Sea Level Anomaly (SLA)

Input data: Along track SLA

Description: The temporal evolution of SLA statistics (mean, standard deviation) are calculated from a cyclic way (altimeter repetivity, daily, weekly, monthly) using successively both altimetric components in the SLA calculation. These statistics are calculated from 1 Hz altimetric measurements after removing spurious sea level measurements. They are calculated globally, but also separating ascending and descending passes (except for SLA Grids), or separating North and South hemispheres.
Name: Temporal evolution of Sea Level Anomaly (SLA)

Input data: Along track SLA

Description: The temporal evolution of SLA statistics (mean, standard deviation) are calculated from a cyclic way (altimeter repetivity, daily, weekly, monthly) using successively both altimetric components in the SLA calculation. These statistics are calculated from 1 Hz altimetric measurements after removing spurious sea level measurements. They are calculated globally, but also separating ascending and descending passes (except for SLA Grids), or separating North and South hemispheres.
Diagnostic A202_a (mission j2)

Name: Differences between temporal evolution of Sea Level Anomaly (SLA)

Input data: Along track SLA

Description: The differences between temporal evolution of SLA are calculated from statistics derived from diagnostic A201 (mean, variance) using 2 different components in the SLA calculation. They are calculated globally, but also separating ascending and descending passes (except for SLA Grids) or separating North and South hemispheres.

Graph: VAR(SLA with IONO_FILTR_ITER) - VAR(SLA with IONO_FILTR)

Mission j2, cycles 1 to 128

![Graph showing differences in variances over cycles from 2009 to 2011](image)

Mean = -0.1239
Diagnostic A202.b (mission j2)

Name: Differences between temporal evolution of Sea Level Anomaly (SLA)

Input data: Along track SLA

Description: The differences between temporal evolution of SLA are calculated from statistics derived from diagnostic A201 (mean, variance) using 2 different components in the SLA calculation. They are calculated globally, but also separating ascending and descending passes (except for SLA Grids) or separating North and South hemispheres.

![Graph showing differences in SLA over time](image-url)
Diagnostic A203_a (mission j2)

Name: Map of Sea Level Anomaly (SLA) over all the period

Input data: Along track SLA

Description: The map of global statistics (mean, standard deviation) of SLA are calculated using successively both altimetric components in the SLA calculation over a large period. These statistics are calculated from 1 Hz altimetric measurements after removing spurious sea level measurements.
Diagnostic A203_b (mission j2)

Name: Map of Sea Level Anomaly (SLA) over all the period

Input data: Along track SLA

Description: The map of global statistics (mean, standard deviation) of SLA are calculated using successively both altimetric components in the SLA calculation over a large period. These statistics are calculated from 1 Hz altimetric measurements after removing spurious sea level measurements.
Diagnostic A203_c (mission j2)

Name: Map of Sea Level Anomaly (SLA) over all the period

Input data: Along track SLA

Description: The map of global statistics (mean, standard deviation) of SLA are calculated using successively both altimetric components in the SLA calculation over a large period. These statistics are calculated from 1 Hz altimetric measurements after removing spurious sea level measurements.

SLA with IONO_FILTR_ITER trends: odd pass numbers
Mission j2, cycles 1 to 128

SLA with IONO_FILTR ITER trends: odd pass numbers
Mission j2, cycles 1 to 128

Diagnostic A204_a (mission j2)

Name: Differences between maps of SLA

Input data: Along track SLA

Description: The difference of SLA maps (mean, standard deviation, slope) is calculated from maps derived from diagnostic A203 using successively both altimetric components in the SLA calculation over a given period. This can be done globally, or separating in ascending and descending passes (except for SLA Grids).

SLA with IONO_FILTR_ITER trends – SLA with IONO_FILTR trends

Mission j2, cycles 1 to 128
Diagnosis: Differences between maps of SLA

Input data: Along track SLA

Description: The difference of SLA maps (mean, standard deviation, slope) is calculated from maps derived from diagnostic A203 using successively both altimetric components in the SLA calculation over a given period. This can be done globally, or separating in ascending and descending passes (except for SLA Grids).
Diagnostic A205_a (mission j2)

Name: Differences between maps of SLA (2)

Input data: Along track SLA

Description: The difference of SLA maps (mean, standard deviation, slope) is calculated from maps derived from diagnostic A203 using successively both altimetric components in the SLA calculation over a given period. This can be done globally, or separating in ascending and descending passes (except for SLA Grids).
Diagnostic A205_b (mission j2)

Name: Differences between maps of SLA (2)

Input data: Along track SLA

Description: The difference of SLA maps (mean, standard deviation, slope) is calculated from maps derived from diagnostic A203 using successively both altimetric components in the SLA calculation over a given period. This can be done globally, or separating in ascending and descending passes (except for SLA Grids).
Name: Periodogram derived from temporal evolution of Sea Level Anomaly (SLA)

Input data: Along track SLA

Description: The periodogram derived from temporal evolution of SLA (global, northern or southern hemisphere) can be done over all periods or focusing on particular periods, such as annual, semiannual or 60 day signal. Therefore mean of SLA differences are computed (every day or cycle), and time data series are plotted as a periodogram.
Diagnosis A206.b (mission j2)

Name: Periodogram derived from temporal evolution of Sea Level Anomaly (SLA)

Input data: Along track SLA

Description: The periodogram derived from temporal evolution of SLA (global, northern or southern hemisphere) can be done over all periods or focusing on particular periods, such as annual, semi annual or 60 day signal. Therefore mean of SLA differences are computed (every day or cycle), and time data series are plotted as a periodogram.
Name: Periodogram derived from temporal evolution of Sea Level Anomaly (SLA)

Input data: Along track SLA

Description: The periodogram derived from temporal evolution of SLA (global, northern or southern hemisphere) can be done over all periods or focusing on particular periods, such as annual, semi annual or 60 day signal. Therefore mean of SLA differences are computed (every day or cycle), and time data series are plotted as a periodogram.
Diagnostic A207 (mission j2)

Name: Sea Level Anomaly (SLA) versus coastal distance

Input data: Along track SLA

Description: Mean and standard deviation of SLA - computed by using successively both altimetric components - are plotted in function of coastal distances between 0 and 100 km.
Name: Sea Level Anomaly (SLA) differences versus coastal distance

Input data: Along track SLA

Description: The differences of SLA variances - computed by using successively both altimetric components - are plotted in function of coastal distances between 0 and 100 km.
Diagnostic A209 (mission j2)

Name: Differences between maps of SLA (3)

Input data: Along track SLA

Description: The differences between maps of SLA are calculated from the SLA differences (mean, standard deviation) using successively both altimetric components in the SLA calculation.

VAR(SLA with IONO_FILTR_ITER) – VAR(SLA with IONO_FILTR)
Mission j2, cycles 1 to 128