Sea State Bias: 3D vs 2D

<table>
<thead>
<tr>
<th>Study variable</th>
<th>3D SSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference variable</td>
<td>2D SSB</td>
</tr>
<tr>
<td>Missions</td>
<td>Envisat (en)</td>
</tr>
<tr>
<td>Period</td>
<td>[19259, 21890]</td>
</tr>
</tbody>
</table>

Creation date: 2011/09/03

Contents

- A001 3
- A002 4
- A003 5
- A004 7
- A101 8
- A102 9
- A103 10
- A104 11
- A201 12
- A202 17
- A203 19
- A204 22
- A205 24
- A206 26
- A207 29
Study overview

In this study, a new sea state bias correction is compared with the non parametric sea state bias correction used in CNES AVISO products for ENVISAT mission. Note that this reference SSB is not homogeneous over the whole Envisat mission.

The impact of using these both sea stats bias corrections on the SSH computation has been analyzed for Envisat mission from September 2002 (cycle 9) to December 2009 (Cycle 84).

The studied correction results from the development of a new non parametric SSB model adapted for Envisat mission which takes into account a third parameter, the mean wave period (Tm) or the swell height (shs), from a numerical wave model (WaveWatch3) forced by ECMWF wind fields. Such 3D models have been developed for the Jason missions and have shown some improvement in term of SSH variance reduction when compared to that from the application of the standard 2D SSB model. See Tran 2010, CLS-DOS-NT-10-287, RA2 Ocean and MWR measurement long-term monitoring - Annual report for WP3, Task 2: "SSB estimation for RA2 altimeter”.

The reference correction for Envisat is the non parametric 2-D sea state bias: Labroue S., 2007: "RA2 ocean and MWR measurement long term monitoring”, Technical Report CLS- DOS-NT-07-198, ESA Contract n 17293/03/I-OL.

All the validation diagnostics displayed in this report has been performed in agreement with the Sea-Level CCI Product Validation Plan (PVP).
Diagnostic A001 (mission en)

Name: Temporal evolution of differences between both altimetric components

Input data: Along-track altimetric components

Description: The temporal evolution of global statistics (mean, variance, slope) of differences between 2 different standards of a same altimetric component (sea surface height correction, altimeter parameter, orbit) are calculated from a cyclic way (altimeter repetivity, daily, weekly, monthly). These statistics are calculated from 1 Hz altimetric measurements after removing spurious sea level measurements.
Diagnostic A002 (mission en)

Name: Map of differences between both altimetric components over all the period

Input data: Along-track altimetric components

Description: The map of global statistics (mean, standard deviation) of differences between 2 different standards of a same altimetric component (sea surface height correction, altimeter parameter, orbit) are calculated over a given period which is the longer as possible to have obtain reliable statically results. These statistics are calculated from 1 Hz altimetric measurements after removing spurious sea level measurements.
Name: Periodogram derived from temporal evolution of altimetric component differences

Input data: Along-track altimetric components

Description: The periodogram derived from temporal and global altimetric component differences is calculated from cycle by cycle monitoring of altimetric component differences (derived from diagnostic A001). It is calculated from the mean or the variance differences. The Periodogram can be calculated for all the periods, but it can be focused on a dedicated period.
Diagnostic A003_b (mission en)

Name: Periodogram derived from temporal evolution of altimetric component differences

Input data: Along-track altimetric components

Description: The periodogram derived from temporal and global altimetric component differences is calculated from cycle by cycle monitoring of altimetric component differences (derived from diagnostic A001). It is calculated from the mean or the variance differences. The Periodogram can be calculated for all the periods, but it can be focused on a dedicated period.
Name : Altimetric component differences versus coastal distances

Input data : Along-track altimetric components

Description : Mean and standard deviation of the differences between 2 different standards of a same altimetric component (sea surface height correction, altimeter parameter, orbit) are computed and plotted in function of coastal distances between 0 and 100 km.
Diagnostic A101 (mission en)

Name: Temporal evolution of SSH crossovers

Input data: Sea Surface Height (SSH) crossovers

Description: The temporal evolution of global statistics (mean, standard deviation) of SSH differences are calculated from a cyclic way (altimeter repetivity, daily, weekly, monthly) using successively both altimetric components in the SSH calculation. SSH crossovers are the differences between ascending and descending passes for time differences between both passes lower than 10 days (in order to reduce the effect of the oceanic variability).
Name: Differences between temporal evolution of SSH crossovers

Input data: Sea Surface Height (SSH) crossovers

Description: The difference of temporal evolution between the global statistics (mean, standard deviation) of SSH differences are calculated using successively both altimetric components in the SSH calculation. SSH crossovers are the differences between ascending and descending passes for time differences between both passes lower than 10 days (in order to reduce the effect of the oceanic variability).
Diagnostic A103 (mission en)

Name: Map of SSH crossovers

Input data: Sea Surface Height (SSH) crossovers

Description: The differences between maps of SSH crossovers differences (mean, variance) are calculated using successively both altimetric components in the SSH calculation. SSH crossovers are the differences between ascending and descending passes for time differences between both passes lower than 10 days (in order to reduce the effect of the oceanic variability).

Mean of SSH with 3D SSB
Mission en, cycles 9 to 83

![Map of SSH crossovers with 3D SSB](image1)

Mean of SSH with 2D SSB
Mission en, cycles 9 to 83

![Map of SSH crossovers with 2D SSB](image2)
Name: Differences between maps of SSH crossovers

Input data: Sea Surface Height (SSH) crossovers

Description: The differences between maps of SSH crossovers (derived from diagnostic A103) are calculated from the SSH crossover differences (mean, standard deviation) using successively both altimetric components in the SSH calculation. SSH crossovers are the differences between ascending and descending passes for time differences between both passes lower than 10 days (in order to reduce the effect of the oceanic variability).

VAR(SSH with 3D SSB) – VAR(SSH with 2D SSB)
Mission en, cycles 9 to 83

SSH crossovers: difference of variances (cm^2)
Diagnostic A201_a (mission en)

Name: Temporal evolution of Sea Level Anomaly (SLA)

Input data: Along track SLA

Description: The temporal evolution of SLA statistics (mean, standard deviation) are calculated from a cyclic way (altimeter repetivity, daily, weekly, monthly) using successively both altimetric components in the SLA calculation. These statistics are calculated from 1 Hz altimetric measurements after removing spurious sea level measurements. They are calculated globally, but also separating ascending and descending passes (except for SLA Grids), or separating North and South hemispheres.

![Graph showing Global MSL Mission en, cycles 9 to 83](image)

- **SLA with 3D SSB**: Slope = 0.487 mm/yr [L.S.R. = 0.143]
- **SLA with 2D SSB**: Slope = 0.693 mm/yr [L.S.R. = 0.139]
Name: Temporal evolution of Sea Level Anomaly (SLA)

Input data: Along track SLA

Description: The temporal evolution of SLA statistics (mean, standard deviation) are calculated from a cyclic way (altimeter repetivity, daily, weekly, monthly) using successively both altimetric components in the SLA calculation. These statistics are calculated from 1 Hz altimetric measurements after removing spurious sea level measurements. They are calculated globally, but also separating ascending and descending passes (except for SLA Grids), or separating North and South hemispheres.
Name: Temporal evolution of Sea Level Anomaly (SLA)

Input data: Along track SLA

Description: The temporal evolution of SLA statistics (mean, standard deviation) are calculated from a cyclic way (altimeter repetivity, daily, weekly, monthly) using successively both altimetric components in the SLA calculation. These statistics are calculated from 1 Hz altimetric measurements after removing spurious sea level measurements. They are calculated globally, but also separating ascending and descending passes (except for SLA Grids), or separating North and South hemispheres.
Name: Temporal evolution of Sea Level Anomaly (SLA)

Input data: Along track SLA

Description: The temporal evolution of SLA statistics (mean, standard deviation) are calculated from a cyclic way (altimeter repetivity, daily, weekly, monthly) using successively both altimetric components in the SLA calculation. These statistics are calculated from 1 Hz altimetric measurements after removing spurious sea level measurements. They are calculated globally, but also separating ascending and descending passes (except for SLA Grids), or separating North and South hemispheres.
Name: Temporal evolution of Sea Level Anomaly (SLA)

Input data: Along track SLA

Description: The temporal evolution of SLA statistics (mean, standard deviation) are calculated from a cyclic way (altimeter repetitivity, daily, weekly, monthly) using successively both altimetric components in the SLA calculation. These statistics are calculated from 1 Hz altimetric measurements after removing spurious sea level measurements. They are calculated globally, but also separating ascending and descending passes (except for SLA Grids), or separating North and South hemispheres.
Diagnostic A202.a (mission en)

Name: Differences between temporal evolution of Sea Level Anomaly (SLA)

Input data: Along track SLA

Description: The differences between temporal evolution of SLA are calculated from statistics derived from diagnostic A201 (mean, variance) using 2 different components in the SLA calculation. They are calculated globally, but also separating ascending and descending passes (except for SLA Grids) or separating North and South hemispheres.

Graph:

VAR(SLA with 3D SSB) - VAR(SLA with 2D SSB)

Mission en, cycles 9 to 83

Difference of variances (cm2)

Mean = -1.734
Diagnostic A202_b (mission en)

Name: Differences between temporal evolution of Sea Level Anomaly (SLA)

Input data: Along track SLA

Description: The differences between temporal evolution of SLA are calculated from statistics derived from diagnostic A201 (mean, variance) using 2 different components in the SLA calculation. They are calculated globally, but also separating ascending and descending passes (except for SLA Grids) or separating North and South hemispheres.

![Graph of differences in variances](image1)

![Graph of differences in variances](image2)
Diagnostic A203_a (mission en)

Name: Map of Sea Level Anomaly (SLA) over all the period

Input data: Along track SLA

Description: The map of global statistics (mean, standard deviation) of SLA are calculated using successively both altimetric components in the SLA calculation over a large period. These statistics are calculated from 1 Hz altimetric measurements after removing spurious sea level measurements.
Diagnostic A203_b (mission en)

Name: Map of Sea Level Anomaly (SLA) over all the period

Input data: Along track SLA

Description: The map of global statistics (mean, standard deviation) of SLA are calculated using successively both altimetric components in the SLA calculation over a large period. These statistics are calculated from 1 Hz altimetric measurements after removing spurious sea level measurements.
Name: Map of Sea Level Anomaly (SLA) over all the period

Input data: Along track SLA

Description: The map of global statistics (mean, standard deviation) of SLA are calculated using successively both altimetric components in the SLA calculation over a large period. These statistics are calculated from 1 Hz altimetric measurements after removing spurious sea level measurements.
Diagnostic A204_a (mission en)

Name: Differences between maps of SLA

Input data: Along track SLA

Description: The difference of SLA maps (mean, standard deviation, slope) is calculated from maps derived from diagnostic A203 using successively both altimetric components in the SLA calculation over a given period. This can be done globally, or separating in ascending and descending passes (except for SLA Grids).

SLA with 3D SSB trends – SLA with 2D SSB trends

Mission en, cycles 9 to 83

Trends (mm/yr)
Name: Differences between maps of SLA

Input data: Along track SLA

Description: The difference of SLA maps (mean, standard deviation, slope) is calculated from maps derived from diagnostic A203 using successively both altimetric components in the SLA calculation over a given period. This can be done globally, or separating in ascending and descending passes (except for SLA Grids).
Diagnostic A205_a (mission en)

Name: Differences between maps of SLA (2)

Input data: Along track SLA

Description: The difference of SLA maps (mean, standard deviation, slope) is calculated from maps derived from diagnostic A203 using successively both altimetric components in the SLA calculation over a given period. This can be done globally, or separating in ascending and descending passes (except for SLA Grids).
Diagnostic A205_b (mission en)

Name: Differences between maps of SLA (2)

Input data: Along track SLA

Description: The difference of SLA maps (mean, standard deviation, slope) is calculated from maps derived from diagnostic A203 using successively both altimetric components in the SLA calculation over a given period. This can be done globally, or separating in ascending and descending passes (except for SLA Grids).
Name: Periodogram derived from temporal evolution of Sea Level Anomaly (SLA)

Input data: Along track SLA

Description: The periodogram derived from temporal evolution of SLA (global, northern or southern hemisphere) can be done over all periods or focusing on particular periods, such as annual, semi annual or 60 day signal. Therefore mean of SLA differences are computed (every day or cycle), and time data series are plotted as a periodogram.
Name: Periodogram derived from temporal evolution of Sea Level Anomaly (SLA)

Input data: Along track SLA

Description: The periodogram derived from temporal evolution of SLA (global, northern or southern hemisphere) can be done over all periods or focusing on particular periods, such as annual, semi annual or 60 day signal. Therefore mean of SLA differences are computed (every day or cycle), and time data series are plotted as a periodogram.
Diagnostic A206_c (mission en)

Name: Periodogram derived from temporal evolution of Sea Level Anomaly (SLA)

Input data: Along track SLA

Description: The periodogram derived from temporal evolution of SLA (global, northern or southern hemisphere) can be done over all periods or focusing on particular periods, such as annual, semi annual or 60 day signal. Therefore mean of SLA differences are computed (every day or cycle), and time data series are plotted as a periodogram.
Diagnostic A207 (mission en)

Name: Sea Level Anomaly (SLA) versus coastal distance

Input data: Along track SLA

Description: Mean and standard deviation of SLA - computed by using successively both altimetric components - are plotted in function of coastal distances between 0 and 100 km.
Name: Sea Level Anomaly (SLA) differences versus coastal distance

Input data: Along track SLA

Description: The differences of SLA variances - computed by using successively both altimetric components - are plotted in function of coastal distances between 0 and 100 km.
Differences between maps of SLA (3)

Input data: Along track SLA

Description: The differences between maps of SLA are calculated from the SLA differences (mean, standard deviation) using successively both altimetric components in the SLA calculation.

VAR(SLA with 3D SSB) – VAR(SLA with 2D SSB)
Mission en, cycles 9 to 83

Difference of variances (cm^2)
Name: Temporal evolution of SSH differences between tide gauges and altimetry measurements

Input data: Tide gauges SSH measurements

Description: The temporal evolution of global statistics (mean, variance, slope) of SSH differences between tide gauges and altimeter measurements are calculated from a cyclic way (altimeter repetivity) using successively both altimetric components in SSH calculation. The altimetric and tide gauges data are colocated with criteria of maximum of correlation, and tide gauges used are derived from global networks (GLOSS/CLIVAR, REFMAR).
Diagnostic C002 (mission en)

Name: Differences of temporal evolution of SSH differences between tide gauges and altimetry measurements

Input data: Tide gauges SSH measurements

Description: The difference between temporal evolution of global statistics of differences between tide gauge and altimeter data differences are calculated from a cyclic way (altimeter repetitivity, daily, weekly, monthly) using successively both altimetric components in altimetric SSH calculation. The altimetric and tide gauges data are collocated with criteria of maximum of correlation, and tide gauges used are derived from global networks as GLOSS/CLIVAR.

\[
\text{Difference of variances: } \text{VAR(SLA with 3D SSB - T.G.)} - \text{VAR(SLA with 2D SSB - T.G.)}
\]

Mission en, cycles 9 to 83

Mean = 0.3412 StdDev = 2.074
Diagnostic C003 (mission en)

Name: Periodogram derived from temporal evolution of SSH differences between tide gauges and altimetry

Input data: Tide gauges SSH measurements

Description: The periodogram derived from temporal evolution of altimetric and tide gauges SSH differences is calculated using successively both altimetric components in the altimetric SSH. The periodogram is calculated from the mean or variance statistics and it can be displayed for all the whole time period or a dedicated one.
Diagnostic C004 (mission en)

Name: Histograms of differences between tide gauges and altimeter SSH differences

Input data: Tide gauges SSH measurements

Description: The difference of histograms between altimeter and tide gauge SSH differences is computed from the elementary statistics (mean, variance) at each tide gauge using successively both altimetric components in the altimetry SSH.

Histogram of the difference of variances: \(\text{VAR(SLA with 3D SSB \cdot T. G.) - VAR(SLA with 2D SSB \cdot T. C)} \)

Mission en, cycles 9 to 83

![Histogram of differences of variances](image)

- Nbr = 142
- Mean = 3.576e-05
- StdDev = 0.003104
