Comparison of CCI PTR time delay with and without IF filter

<table>
<thead>
<tr>
<th>Study variable</th>
<th>PTR_DELAY_CCI_IF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference variable</td>
<td>PTR_DELAY_CCI</td>
</tr>
<tr>
<td>Missions</td>
<td>Envisat (en)</td>
</tr>
<tr>
<td>Period</td>
<td>[19265.898824964341, 22100.898711737245]</td>
</tr>
</tbody>
</table>

Creation date : 2011/09/06

Contents

A001	3
A002	4
A003	5
A004	7
A101	8
A102	9
A103	10
A104	11
A201	12
A202	17
A203	19
A204	22
A205	24
A206	26
A207	29
In this study, the new PTR time delay with IF mask developed in the frame of sea-level CCI project has been compared to the CCI PTR time delay without IF mask to observe the impact of the IF mask on the ENVISAT sea surface height (SSH) in Ku-Band.

The impact of using these two PTR time delay on the SSH calculation has been analyzed for ENVISAT mission from October 2002 (cycle 10) to July 2010 (Cycle 90).

The PTR time delay is an instrumental correction computed in level 1b of ENVISAT ground segment. This correction allows, among other things, to take into account the ageing of the altimeter. The IF mask is applied to account for the influence of the altimeter on measurements. Both PTR time delay were provided by IsardSAT which is in charge of the ENVISAT Level 1b.

All the validation diagnostics displayed in this report have been performed in agreement with the Sea-Level CCI Product Validation Plan (PVP).
Name: Temporal evolution of differences between both altimetric components

Input data: Along-track altimetric components

Description: The temporal evolution of global statistics (mean, variance, slope) of differences between 2 different standards of a same altimetric component (sea surface height correction, altimeter parameter, orbit) are calculated from a cyclic way (altimeter repetivity, daily, weekly, monthly). These statistics are calculated from 1 Hz altimetric measurements after removing spurious sea level measurements.
Diagnostic A002 (mission en)

Name: Map of differences between both altimetric components over all the period

Input data: Along-track altimetric components

Description: The map of global statistics (mean, standard deviation) of differences between 2 different standards of a same altimetric component (sea surface height correction, altimeter parameter, orbit) are calculated over a given period which is the longer as possible to have obtain reliable statically results. These statistics are calculated from 1 Hz altimetric measurements after removing spurious sea level measurements.
Name: Periodogram derived from temporal evolution of altimetric component differences

Input data: Along-track altimetric components

Description: The periodogram derived from temporal and global altimetric component differences is calculated from cycle by cycle monitoring of altimetric component differences (derived from diagnostic A001). It is calculated from the mean or the variance differences. The Periodogram can be calculated for all the periods, but it can be focused on a dedicated period.
Name: Periodogram derived from temporal evolution of altimetric component differences

Input data: Along-track altimetric components

Description: The periodogram derived from temporal and global altimetric component differences is calculated from cycle by cycle monitoring of altimetric component differences (derived from diagnostic A001). It is calculated from the mean or the variance differences. The Periodogram can be calculated for all the periods, but it can be focused on a dedicated period.
Diagnostic A004 (mission en)

Name: Altimetric component differences versus coastal distances

Input data: Along-track altimetric components

Description: Mean and standard deviation of the differences between 2 different standards of a same altimetric component (sea surface height correction, altimeter parameter, orbit) are computed and plotted in function of coastal distances between 0 and 100 km.
Diagnostic A101 (mission en)

Name: Temporal evolution of SSH crossovers

Input data: Sea Surface Height (SSH) crossovers

Description: The temporal evolution of global statistics (mean, standard deviation) of SSH differences are calculated from a cyclic way (altimeter repetivity, daily, weekly, monthly) using successively both altimetric components in the SSH calculation. SSH crossovers are the differences between ascending and descending passes for time differences between both passes lower than 10 days (in order to reduce the effect of the oceanic variability).

![Graph of Mean of SSH crossovers](image1)

![Graph of Standard deviations of SSH crossovers](image2)
Name: Differences between temporal evolution of SSH crossovers

Input data: Sea Surface Height (SSH) crossovers

Description: The difference of temporal evolution between the global statistics (mean, standard deviation) of SSH differences are calculated using successively both altimetric components in the SSH calculation. SSH crossovers are the differences between ascending and descending passes for time differences between both passes lower than 10 days (in order to reduce the effect of the oceanic variability).
Diagnostic A103 (mission en)

Name: Map of SSH crossovers

Input data: Sea Surface Height (SSH) crossovers

Description: The differences between maps of SSH crossovers differences (mean, variance) are calculated using successively both altimetric components in the SSH calculation. SSH crossovers are the differences between ascending and descending passes for time differences between both passes lower than 10 days (in order to reduce the effect of the oceanic variability).
Diagnostic A104 (mission en)

Name: Differences between maps of SSH crossovers

Input data: Sea Surface Height (SSH) crossovers

Description: The differences between maps of SSH crossovers (derived from diagnostic A103) are calculated from the SSH crossover differences (mean, standard deviation) using successively both altimetric components in the SSH calculation. SSH crossovers are the differences between ascending and descending passes for time differences between both passes lower than 10 days (in order to reduce the effect of the oceanic variability).

\[
\text{VAR(SSH with PTR_DELAY_CCI_IF)} - \text{VAR(SSH with PTR_DELAY_CCI)} \\
\text{Mission en, cycles 10 to 90}
\]

SSH crossovers: difference of variances (cm^2)
Diagnostic A201.a (mission en)

Name: Temporal evolution of Sea Level Anomaly (SLA)

Input data: Along track SLA

Description: The temporal evolution of SLA statistics (mean, standard deviation) are calculated from a cyclic way (altimeter repetivity, daily, weekly, monthly) using successively both altimetric components in the SLA calculation. These statistics are calculated from 1 Hz altimetric measurements after removing spurious sea level measurements. They are calculated globally, but also separating ascending and descending passes (except for SLA Grids), or separating North and South hemispheres.

[Graph showing Global MSL Mission en, cycles 10 to 90 with linear fits and slopes provided]
Name: Temporal evolution of Sea Level Anomaly (SLA)

Input data: Along track SLA

Description: The temporal evolution of SLA statistics (mean, standard deviation) are calculated from a cyclic way (altimeter repetivity, daily, weekly, monthly) using successively both altimetric components in the SLA calculation. These statistics are calculated from 1 Hz altimetric measurements after removing spurious sea level measurements. They are calculated globally, but also separating ascending and descending passes (except for SLA Grids), or separating North and South hemispheres.
Name: Temporal evolution of Sea Level Anomaly (SLA)

Input data: Along track SLA

Description: The temporal evolution of SLA statistics (mean, standard deviation) are calculated from a cyclic way (altimeter repetivity, daily, weekly, monthly) using successively both altimetric components in the SLA calculation. These statistics are calculated from 1 Hz altimetric measurements after removing spurious sea level measurements. They are calculated globally, but also separating ascending and descending passes (except for SLA Grids), or separating North and South hemispheres.
Name: Temporal evolution of Sea Level Anomaly (SLA)

Input data: Along track SLA

Description: The temporal evolution of SLA statistics (mean, standard deviation) are calculated from a cyclic way (altimeter repetivity, daily, weekly, monthly) using successively both altimetric components in the SLA calculation. These statistics are calculated from 1 Hz altimetric measurements after removing spurious sea level measurements. They are calculated globally, but also separating ascending and descending passes (except for SLA Grids), or separating North and South hemispheres.
Diagnostic A201_e (mission en)

Name: Temporal evolution of Sea Level Anomaly (SLA)

Input data: Along track SLA

Description: The temporal evolution of SLA statistics (mean, standard deviation) are calculated from a cyclic way (altimeter repetivity, daily, weekly, monthly) using successively both altimetric components in the SLA calculation. These statistics are calculated from 1 Hz altimetric measurements after removing spurious sea level measurements. They are calculated globally, but also separating ascending and descending passes (except for SLA Grids), or separating North and South hemispheres.
Name: Differences between temporal evolution of Sea Level Anomaly (SLA)

Input data: Along track SLA

Description: The differences between temporal evolution of SLA are calculated from statistics derived from diagnostic A201 (mean, variance) using 2 different components in the SLA calculation. They are calculated globally, but also separating ascending and descending passes (except for SLA Grids) or separating North and South hemispheres.
Diagnostic A202_b (mission en)

Name: Differences between temporal evolution of Sea Level Anomaly (SLA)

Input data: Along track SLA

Description: The differences between temporal evolution of SLA are calculated from statistics derived from diagnostic A201 (mean, variance) using 2 different components in the SLA calculation. They are calculated globally, but also separating ascending and descending passes (except for SLA Grids) or separating North and South hemispheres.

![Graphs showing differences in SLA evolution](image)
Diagnostic A203.a (mission en)

Name: Map of Sea Level Anomaly (SLA) over all the period

Input data: Along track SLA

Description: The map of global statistics (mean, standard deviation) of SLA are calculated using successively both altimetric components in the SLA calculation over a large period. These statistics are calculated from 1 Hz altimetric measurements after removing spurious sea level measurements.

SLA with PTR_DELAY_CCI_IF trends
Mission en, cycles 10 to 90

Trends (mm/yr)

SLA with PTR_DELAY_CCI trends
Mission en, cycles 10 to 90

Trends (mm/yr)
Diagnostic A203_b (mission en)

Name: Map of Sea Level Anomaly (SLA) over all the period

Input data: Along track SLA

Description: The map of global statistics (mean, standard deviation) of SLA are calculated using successively both altimetric components in the SLA calculation over a large period. These statistics are calculated from 1 Hz altimetric measurements after removing spurious sea level measurements.
Name: Map of Sea Level Anomaly (SLA) over all the period

Input data: Along track SLA

Description: The map of global statistics (mean, standard deviation) of SLA are calculated using successively both altimetric components in the SLA calculation over a large period. These statistics are calculated from 1 Hz altimetric measurements after removing spurious sea level measurements.
Name: Differences between maps of SLA

Input data: Along track SLA

Description: The difference of SLA maps (mean, standard deviation, slope) is calculated from maps derived from diagnostic A203 using successively both altimetric components in the SLA calculation over a given period. This can be done globally, or separating in ascending and descending passes (except for SLA Grids).
Name: Differences between maps of SLA

Input data: Along track SLA

Description: The difference of SLA maps (mean, standard deviation, slope) is calculated from maps derived from diagnostic A203 using successively both altimetric components in the SLA calculation over a given period. This can be done globally, or separating in ascending and descending passes (except for SLA Grids).
Diagnostic A205_a (mission en)

Name: Differences between maps of SLA (2)

Input data: Along track SLA

Description: The difference of SLA maps (mean, standard deviation, slope) is calculated from maps derived from diagnostic A203 using successively both altimetric components in the SLA calculation over a given period. This can be done globally, or separating in ascending and descending passes (except for SLA Grids).
Name: Differences between maps of SLA (2)

Input data: Along track SLA

Description: The difference of SLA maps (mean, standard deviation, slope) is calculated from maps derived from diagnostic A203 using successively both altimetric components in the SLA calculation over a given period. This can be done globally, or separating in ascending and descending passes (except for SLA Grids).
Name: Periodogram derived from temporal evolution of Sea Level Anomaly (SLA)

Input data: Along track SLA

Description: The periodogram derived from temporal evolution of SLA (global, northern or southern hemisphere) can be done over all periods or focusing on particular periods, such as annual, semi annual or 60 day signal. Therefore mean of SLA differences are computed (every day or cycle), and time data series are plotted as a periodogram.
Name: Periodogram derived from temporal evolution of Sea Level Anomaly (SLA)

Input data: Along track SLA

Description: The periodogram derived from temporal evolution of SLA (global, northern or southern hemisphere) can be done over all periods or focusing on particular periods, such as annual, semi-annual or 60 day signal. Therefore mean of SLA differences are computed (every day or cycle), and time data series are plotted as a periodogram.
Name: Periodogram derived from temporal evolution of Sea Level Anomaly (SLA)

Input data: Along track SLA

Description: The periodogram derived from temporal evolution of SLA (global, northern or southern hemisphere) can be done over all periods or focusing on particular periods, such as annual, semi annual or 60 day signal. Therefore mean of SLA differences are computed (every day or cycle), and time data series are plotted as a periodogram.
Name: Sea Level Anomaly (SLA) versus coastal distance

Input data: Along track SLA

Description: Mean and standard deviation of SLA - computed by using successively both altimetric components - are plotted in function of coastal distances between 0 and 100 km.
Name: Sea Level Anomaly (SLA) differences versus coastal distance

Input data: Along track SLA

Description: The differences of SLA variances - computed by using successively both altimetric components - are plotted in function of coastal distances between 0 and 100 km.

![Graph showing differences of SLA variances plotted as a function of coastal distance. The graph includes a mean value of 0.0003637.]
Name: Differences between maps of SLA (3)

Input data: Along track SLA

Description: The differences between maps of SLA are calculated from the SLA differences (mean, standard deviation) using successively both altimetric components in the SLA calculation.

\[\text{AR(SLA with PTR_DELAY_CCI_IF)} - \text{VAR(SLA with PTR_DELAY_CCI)} \]

Mission en, cycles 10 to 90

Difference of variances (cm^2)
Name: Temporal evolution of SSH differences between tide gauges and altimetry measurements

Input data: Tide gauges SSH measurements

Description: The temporal evolution of global statistics (mean, variance, slope) of SSH differences between tide gauges and altimeter measurements are calculated from a cyclic way (altimeter repetivity) using successively both altimetric components in SSH calculation. The altimetric and tide gauges data are colocated with criteria of maximum of correlation, and tide gauges used are derived from global networks (GLOSS/CLIVAR, REFMAR).
Name: Differences of temporal evolution of SSH differences between tide gauges and altimetry measurements

Input data: Tide gauges SSH measurements

Description: The difference between temporal evolution of global statistics of differences between tide gauge and altimeter data differences are calculated from a cyclic way (altimeter repetivity, daily, weekly, monthly) using successively both altimetric components in altimetric SSH calculation. The altimetric and tide gauges data are collocated with criteria of maximum of correlation, and tide gauges used are derived from global networks as GLOSS/CLIVAR.

Difference of variances: \(\text{VAR(SLA with PTR_DELAY_CCI_IF - T. G.)} - \text{VAR(SLA with PTR_DELAY_CCI - T. G.)} \)

Mission en, cycles 10 to 90

- Mean = 0.0002399
- StdDev = 0.005838
Name: Periodogram derived from temporal evolution of SSH differences between tide gauges and altimetry

Input data: Tide gauges SSH measurements

Description: The periodogram derived from temporal evolution of altimetric and tide gauges SSH differences is calculated using successively both altimetric components in the altimetric SSH. The periodogram is calculated from the mean or variance statistics and it can be displayed for all the whole time period or a dedicated one.
Diagnostic C004 (mission en)

Name: Histograms of differences between tide gauges and altimeter SSH differences

Input data: Tide gauges SSH measurements

Description: The difference of histograms between altimeter and tide gauge SSH differences is computed from the elementary statistics (mean, variance) at each tide gauge using successively both altimetric components in the altimetry SSH.

ram of the difference of variances: \(\text{VAR} (\text{SLA with PTR}_{-} \text{DELAY}_{-} \text{CCI}_{-} \text{IF} - \text{T. G.}) \cdot \text{VAR} (\text{SLA with PTR}_{-} \text{DELAY}) \)

Mission en, cycles 10 to 90

![Graph showing differences of variances](image-url)